SHOCK WAVE INCIDENCE ON A V-SHAPED CAVITY
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We study theoretically and experimentally the motion of metal arising from a plane shock
wave striking a V-shaped cavity. Using the functionally invariant solutions of Sobolev, we
write out the acoustic approximation for this problem and determine the region of its ap-
plicability. It is shown that in the region in which the acoustic approximation is not appli-
cable, the flow in the principal term is described by the incompressible fluid equations for
which the boundary conditions are defined by the acoustic region. The experimental tech-
nique is described and a comparison of the theoretical and experimental data is made.

We examine the motion which develops as a result of incidence of a shock wave, parallel to the xz
plane, on a V-shaped cavity whose apex coincides with the z axis. The equation of state of the medium is

p= 28"y —1) 1)

Ahead of the wave the velocity u=90, pressure p=0, relative density 6=1, the entropy measure vy =1,
the density is py, and the sound speed is c¢,. The constant pressure py is specified at the shock wave front.
The study is macde under the assumption that the ratio

£ = b1 (2)

T pete®
is small,

In this case it turns out that the flow examined in the principal term in x, vy, z, t space breaks down
into two regions: in the first region, immediately adjacent to the front, the principal term is determined
by the linearized equations of gasdynamics (acoustic approximation), while in the second region the prin-
cipal term is determined by the incompressible fluid equations. In the following, we present the principal
term in the region corresponding to the acoustic approximation and establish the region in which the prin-
cipal flow term is determined by the incompressible fluid equations,
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Fig. 3

It is obvious that the flow is independent of the z coordinate; therefore, we ex-
amine the flow in the x, y plane. It follows from the conditions at the shock wave that

V] at the front
Pi=1p400%, 0 =1 -8 u,=0, u, =ecy, D=c¢, (3)
where D is the wave velocity,
HAI 4"5, At the front u/cy® €. As long as this ratio remains small, we can consider the

acoustic approximation; in this approximation we can assume that
Fig. 4 P = Pot*(6 — 1) (4)

The linearized gasdynamic equations are

2 a ) duy | 1 9 a 19
’%"i‘poco( = + uy> 0, _‘5; ’l‘T—Ii»:Ov uy +— Py 35 0 (5)

The motion behind the front after its incidence on the hollow wedge is self-similar, The self-similar
variables are ¢ =x/t, n=y/t (t is time reckoned from the moment of incidence), The line 1 =¢y corresponds
to the shock wave front. The equations of motion in the acoustic approximation coincide with the equations
written in Lagrangian coordinates, Therefore, in the acoustic approximation the free boundary coincides
with the sides of the wedge, i.e.,

£ = —-tg yn (2y is the wedge angle). (6)

In the £, 7 plane, outside the region cut out by the characteristics emanating from the points where
the front crosses the free boundary, the values of the gasdynamic functions coincide with the correspond-
ing values at the front. In the variables £, 7 the acoustic equations will be

iran—(Gr+5r -0, Grei a0 i S a—ct =0 (7)
The flow characteristics will be the straight lines
n=_C% (8)
corresponding to the streamlines, the straight lines
N=pE=VI+ P (9)
and the circular arc enveloping them
824 n?=c% (10)

The region of constancy is bounded by the front 7 =c¢,, and by the characteristics AB, A'B', BB!.,
(Shaded region in Fig. 1.)

The equation of the characteristic AB is

N = [tg 2 yE —c, V1 -+ tg¥ 29](+ ~ < s, — ~p > 1/4m) (11)
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The equation of the characteristic A'B' is
W= = ltg & —LeV T+ tg2y] (—~y.<Udm, + ~y> 1/4n) (12)

In Fig. 1 the broken line BACOC'A'B! and the circular arc BB' bound on the plane of the self-simi-
lar variables £, 1 the zone disturbed by the wave which reflects from the cutout boundary. In this region
the flow is potential. The solution of the acoustics equations in this region was first calculated by Sobolev
[1] using functionally invariant solution theory.

After introducing the potential ¢ in the form

oy )y =1D(E n) (13)

this solution can be written as

@ == Oon free boundary OA and 04’

D = —eo [sin 29 — (1 — cos 2y)n] in region C"4A'B’

® = ¢? ¢ [sin 2y — (1 — cos 2y)n] inregion CAB (14)
O = @, (&, n)in region COC’'B'BC

Here -
D0 3 (H_‘;ﬁ)““”“ [+ (25 + 1)a YV T=7) cos (21 +- 1)t (m )
Co=(—1)" (zrlLmf[(g}:ff):?(iﬁ)%1:>21 =) (15)
r:]/ij)_—!——_nz’ B:arctg*f’]—, ux:%%)—, uy:'g;::' (16)

From the first and second equations (7) and the condition ® =0 at the free boundary, it follows that

co? (8 — 1) = EOD / 0 + no® / on — ® = ro®/dr — @ (17

The series defining 6 can be summed

=1+ s[arc tg N (gh{;qﬂ =9 + arctg LoeEr T AT (STh_;qn +9) }

¢g=In(1+Vi=7r)—Inr (18)
In the present paper we draw certain qualitative conclusions from these formulas and compare them
with experiment,

1t follows from (15) and (18) that as r— 0

D s O
Eaat =

(19)

oD o .
& cosay cosa (i — 0) 1%, —5-= 4eo? —— ecosoysina(n—8)r

8 — 1 = 4e cos a y cos o (W — O)r®

The solution (15), (18) therefore corresponds to the acoustic approximation but is valid only in the
region in which the particle velocity is small in comparison with the sound speed. As r—~ 0
1 102 1 [3ID\E 16,207 .
R | (et e [V e 2R a2 (e
v = = K = ) + ( g >;|~ o= g2r2(a-1) (20)
Since 1/2< @<1, as r— 0, the value of v2— «; therefore, it is necessary to identify the region in
which the acoustic approximation is valid. As a result of substituting the asymptotic expression (19) into
the linearized gasdynamic equations for isentropic and potential flows, we find that the acoustic approxima-
tion can be used only in that region where er® 2« 1. To study the solution inthe region where er® ?~0(1),
it is convenient to convert to the new scales

r= al/(z—a) R, @ = 82/(2—41) 'll), §—— { = ez/(‘z—m)A (21)

In this case the region of finite values of R is subject to investigation, Approach of r to 0 in the
acoustic region means that R— «, Consequently, as R—  the following asymptotic relation is valid:
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== ——-cosay cos bR, A = 4 cosaycosaR* 22)

It follows from the equations obtained by substituting (21) into the gasdynamic system for isentropic
and potential flows that as €— 0 and for finite values of R the following equation must be satisfied:

o2 1 oy 1 0y
SR T B e +wE T (23)
i.e., ¥(R, Q) is a harmonic function satisfying the asymptotic relation

002

Y= ;‘_1 cosaycosafR™ for R—» oo (24)

Since the acoustic approximation ceases to be valid for finite values of R, the free boundary in the
¢, n plane no longer coincides with the straight-line segments. Along the free boundary the following equa-
tions must be satisfied:

61‘_ ay__ op 1 2 _
=W =0 g vt=0 (25)

which in the variables £, n and the function ¥(¢, 1) is written as

i a 0 1
= (G ) [(SE =) = — v g (0 ) =0 (26)

We note, incidentally, that the boundary condition (26) yields the same scale for transition from the
region where acoustics governs into the region in which the incompressible fluid equations appear in the
principal term.

Obviously, as R— « the equation of the free boundary will be
E=d-tg (27)

Thus the problem is reduced to finding the harmonic function ¥(\, 1) which satisfies the asymptotic
relation (24) and the conditions at the free boundary (26). '

The experimental study of the process of shock wave incidence on a corner was accomplished with
the aid of the SFR high-speed photorecorder operating in the time magnification regime with frame rate
10% per second. The experiments were conducted in dural specimens with the dimensions shown in Fig. 2,
Explosive charges made from hexogen and TG 50/50 were used as the shock wave sources. Special conical
charges made from two explosives with different detonation rates were prepared in order to obtain a plane
shock wave, The charges were placed directly on the upper surface of the specimen,

The angles y at the apex of the observed wedge were 15, 30, 32°, Figure 3 shows photographs of the
jet formation process for the angles y =15° and y =32°,

In comparing the results of the theoretical study and the experimental data, we compared the veloc-
ities w of the motion of the point of intersection of the free boundary with the axis of symmetry, the "col-
lapse™ point, and the free boundary profile. In the acoustic approximation the quantities r and 6 can be
considered the Lagrangian coordinates and we can use (22) to find the Eulerian coordinates of a given point,
The correspondence between the Eulerian and Lagrangian coordinates will not be one-to-one in the vicinity
of the collapse point, This is associated with the fact that the acoustic approximation is not applicable in
this vicinity. Specifically, the half-lines corresponding to the free boundary become two curves which cross
on the axis of symmetry. The point of intersection of these curves can be taken as the collapse point, and
the curve segments located below this point can be taken as the free boundary profile, We note that the
free-boundary profile obtained in this way will change with time; however, the angle formed by the profile
with the axis of symmetry at the collapse point does not depend on the time. The following comparative
data describe the velocities w of the collapse point O, and Fig, 4 shows the free-boundary profiles obtained
experimentally for t=« (B'OB), and from the acoustic approximation (dashed line A'OA) for some definite
value of t,

For y =15° the calculated w=9000 m/sec, experimental w="7000-8000 m/sec; for y =30° the calculated
w="7000 m/sec, experimental w=6000~8000 m/sec.
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